Search results for "Mathematics - General Topology"

showing 10 items of 25 documents

Multiple facets of inverse continuity

2021

International audience; Inversion of various inclusions that characterize continuity in topological spaces results in numerous variants of quotient and perfect maps. In the framework of convergences, the said inclusions are no longer equivalent, and each of them characterizes continuity in a different concretely reflective subcategory of convergences. On the other hand, it turns out that the mentioned variants of quotient and perfect maps are quotient and perfect maps with respect to these subcategories. This perspective enables use of convergence-theoretic tools in quests related to quotient and perfect maps, considerably simplifying the traditional approach. Similar techniques would be un…

54A20 54C10General Topology (math.GN)FOS: Mathematics[MATH] Mathematics [math][MATH]Mathematics [math]Mathematics - General Topology
researchProduct

Group topologies coarser than the Isbell topology

2011

Abstract The Isbell, compact-open and point-open topologies on the set C ( X , R ) of continuous real-valued maps can be represented as the dual topologies with respect to some collections α ( X ) of compact families of open subsets of a topological space X . Those α ( X ) for which addition is jointly continuous at the zero function in C α ( X , R ) are characterized, and sufficient conditions for translations to be continuous are found. As a result, collections α ( X ) for which C α ( X , R ) is a topological vector space are defined canonically. The Isbell topology coincides with this vector space topology if and only if X is infraconsonant. Examples based on measure theoretic methods, t…

54C35 54C40 54A10Function spaceGroup (mathematics)HyperspaceGeneral Topology (math.GN)Isbell topologyInfraconsonanceTopological spaceFunction spaceTopologyTopological vector spaceTopological groupFunctional Analysis (math.FA)Mathematics - Functional AnalysisHyperspaceFOS: MathematicsTopological groupGeometry and TopologyConsonanceTopology (chemistry)Vector spaceMathematicsMathematics - General Topology
researchProduct

Variations of selective separability II: Discrete sets and the influence of convergence and maximality

2012

A space $X$ is called selectively separable(R-separable) if for every sequence of dense subspaces $(D_n : n\in\omega)$ one can pick finite (respectively, one-point) subsets $F_n\subset D_n$ such that $\bigcup_{n\in\omega}F_n$ is dense in $X$. These properties are much stronger than separability, but are equivalent to it in the presence of certain convergence properties. For example, we show that every Hausdorff separable radial space is R-separable and note that neither separable sequential nor separable Whyburn spaces have to be selectively separable. A space is called \emph{d-separable} if it has a dense $\sigma$-discrete subspace. We call a space $X$ D-separable if for every sequence of …

54D65 54A25 54D55 54A20H-separable spaceSubmaximalD+-separable spaceSequential spaceFUNCTION-SPACESSeparable spaceSpace (mathematics)INVARIANTSSeparable spaceCombinatoricsGN-separable spaceStrong fan tightnessM-separable spaceMaximal spaceConvergence (routing)Radial spaceFOS: MathematicsFréchet spaceCountable setStratifiable spaceWhyburn propertyTOPOLOGIESDH+-separable spaceTightnessMathematics - General TopologyMathematicsDH-separable spaceD-separable spaceSequenceExtra-resolvable spaceGeneral Topology (math.GN)Hausdorff spaceResolvableR-separable spaceLinear subspaceResolvable spaceSequentialDiscretely generated spaceSubmaximal spaceGeometry and TopologyTOPOLOGIES; FUNCTION-SPACES; INVARIANTSSS+ spaceFan tightnessCrowded spaceSubspace topologyTopology and its Applications
researchProduct

Free sequences and the tightness of pseudoradial spaces

2019

Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelof Hausdorff almost radial space X and the set-tightness of every Lindelof Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhasz, Soukup, Szentmiklossy and Weiss by proving that if X is a Lindelof Hausdorff space, and $$X_\delta $$ denotes the $$G_\delta $$ topology on X then $$t(X_\delta ) \le 2^{t(X)}$$ . Finally, we exploit this to prove that if X is a Lindelof Hausdorff pseudoradial space then $$F(X_\delta ) \le 2^{F(X)}$$ .

Algebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Hausdorff spaceMathematics::General TopologySpace (mathematics)01 natural sciencesInfimum and supremum010101 applied mathematicsCombinatoricsMathematics::LogicComputational MathematicsCharacter (mathematics)Free sequence tightness Lindelof degree pseudoradialFOS: MathematicsGeometry and TopologySettore MAT/03 - Geometria0101 mathematicsAnalysisMathematics - General TopologyMathematics
researchProduct

Cardinal invariants of cellular Lindelof spaces

2018

A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…

Arhangel’skii TheoremMathematics::General MathematicsDiagonalMathematics::General TopologyRank (differential topology)Space (mathematics)01 natural sciencesCombinatoricsCountable chain conditionCardinalityCardinal inequalityLindelöf spaceFOS: MathematicsContinuum (set theory)0101 mathematicsMathematicsMathematics - General TopologyAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Nonlinear Sciences::Cellular Automata and Lattice Gases· Elementary submodel010101 applied mathematicsMonotonically normal spaceMathematics::LogicComputational MathematicsLindelöf spaceCountable chain conditionGeometry and TopologyAnalysis
researchProduct

On closures of discrete sets

2018

The depth of a topological space $X$ ($g(X)$) is defined as the supremum of the cardinalities of closures of discrete subsets of $X$. Solving a problem of Mart\'inez-Ruiz, Ram\'irez-P\'aramo and Romero-Morales, we prove that the cardinal inequality $|X| \leq g(X)^{L(X) \cdot F(X)}$ holds for every Hausdorff space $X$, where $L(X)$ is the Lindel\"of number of $X$ and $F(X)$ is the supremum of the cardinalities of the free sequences in $X$.

CombinatoricsMathematics (miscellaneous)Cardinal invariants Lindelof space Discrete set Elementary submodel CellularityGeneral Topology (math.GN)FOS: MathematicsHausdorff spaceMathematics::General TopologySettore MAT/03 - GeometriaTopological spaceDiscrete setInfimum and supremumMathematics - General TopologyMathematics
researchProduct

A note on rank 2 diagonals

2020

&lt;p&gt;We solve two questions regarding spaces with a (G&lt;sub&gt;δ&lt;/sub&gt;)-diagonal of rank 2. One is a question of Basile, Bella and Ridderbos about weakly Lindelöf spaces with a G&lt;sub&gt;δ&lt;/sub&gt;-diagonal of rank 2 and the other is a question of Arhangel’skii and Bella asking whether every space with a diagonal of rank 2 and cellularity continuum has cardinality at most continuum.&lt;/p&gt;

DiagonalCardinal invariantsMathematics::General TopologyWeakly Lindelöflcsh:AnalysisSpace (mathematics)01 natural sciencesCombinatoricsBELLACardinalitydual propertiesCardinality boundsFOS: MathematicsRank (graph theory)Continuum (set theory)0101 mathematicsDual propertiesMathematics - General TopologyMathematicsweakly LindelofGδ- diagonallcsh:Mathematics010102 general mathematicsGeneral Topology (math.GN)neighbourhood assignmentGδ-diagonallcsh:QA299.6-433lcsh:QA1-939gδ-diagonal010101 applied mathematicscardinality boundsMathematics::LogicNeighbourhood assignmentSettore MAT/03 - GeometriaGeometry and Topologyweakly lindelöf
researchProduct

Infinite games and chain conditions

2015

We apply the theory of infinite two-person games to two well-known problems in topology: Suslin's Problem and Arhangel'skii's problem on $G_\delta$ covers of compact spaces. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable and 2) in every compact space satisfying the game-theoretic version of the weak Lindel\"of property, every cover by $G_\delta$ sets has a continuum-sized subcollection whose union is $G_\delta$-dense.

Discrete mathematicsAlgebra and Number TheoryProperty (philosophy)010102 general mathematicsGeneral Topology (math.GN)Mathematics::General Topology010103 numerical & computational mathematicsTopological space01 natural sciencesSeparable spaceCompact spaceChain (algebraic topology)Cover (topology)Countable chain conditionFOS: Mathematicstopological gamesselection principles0101 mathematicscardinal inequalitiesChain conditionsTopology (chemistry)MathematicsMathematics - General Topology
researchProduct

On the cardinality of almost discretely Lindelof spaces

2016

A space is said to be almost discretely Lindelof if every discrete subset can be covered by a Lindelof subspace. Juhasz et al. (Weakly linearly Lindelof monotonically normal spaces are Lindelof, preprint, arXiv:1610.04506 ) asked whether every almost discretely Lindelof first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under $$2^{<{\mathfrak {c}}}={\mathfrak {c}}$$ (which is a consequence of Martin’s Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhasz et al. (First-countable and almost discretely Lindelof $$T_3$$ spaces have cardinality at most continuum, preprint, arXiv:1612.06651 ). We conclude with a few rel…

Discrete mathematicsCardinal inequality Lindelof space Arhangel’skii Theorem elementary submodel left-separated discrete set free sequence.General Mathematics010102 general mathematicsHausdorff spaceGeneral Topology (math.GN)Mathematics::General TopologyMonotonic functionSpace (mathematics)01 natural sciences010101 applied mathematicsMathematics::LogicCardinalityLindelöf spaceFOS: MathematicsSettore MAT/03 - GeometriaContinuum (set theory)0101 mathematicsSubspace topologyAxiomMathematics - General TopologyMathematics
researchProduct

Comparing weak versions of separability

2012

Our aim is to investigate spaces with sigma-discrete and meager dense sets, as well as selective versions of these properties. We construct numerous examples to point out the differences between these classes while answering questions of Tkachuk [30], Hutchinson [17] and the authors of [8].

Discrete mathematicsSelection principlesGeneral Topology (math.GN)Mathematics::General TopologyCorson compactSeparableSeparable spaceDiscreteFOS: MathematicsPoint (geometry)Geometry and Topology54D65 54B10 54C35Construct (philosophy)MathematicsMathematics - General Topology
researchProduct